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Abstract: This paper deals with the formulation, calibration, and validation of the Lattice Discrete Particle

Model (LDPM) suitable for the simulation of the failure behavior of concrete. LDPM simulates concrete at the

meso-scale considered to be the length scale of coarse aggregate pieces. LDPM is formulated in the framework

of discrete models for which the unknown displacement field is not continuous but only defined at discrete points

representing the center of discrete particles. The size and distribution of the particles is obtained by idealizing

the geometry of the concrete’s internal structure. Discrete compatibility and equilibrium equations are used to

formulate the governing equations of the LDPM computational framework. Particle contact behavior represents

the mechanical interaction among adjacent aggregate particles through the embedding mortar. Such interaction

is governed by meso-scale constitutive equations simulating meso-scale tensile fracturing with strain-softening,

cohesive and frictional shearing, and nonlinear compressive behavior with strain-hardening. The present, Part I,

of this two-part study deals with model formulation leaving model calibration and validation to the subsequent

Part II.

1 Introduction

Concrete is an heterogeneous material characterized by several length scales of observation ranging from

the atomistic scale (10−15 m), characterized by the behavior of crystalline particles of hydrated Portland

cement, to the macroscopic scale (101 m), at which concrete has been traditionally considered homoge-

neous. It is now widely recognized that accurate modeling of multiscale materials calls for the adoption

of multiscale techniques able to bridge the various scales and to bring to the macroscopic scale the most

important effects of lower scale phenomena. In the recent past, publications proposing new multiscale

theories have flourished, especially for modeling nano-composite materials and atomistic and molecular

systems [23]. The same kind of development has not appeared yet in concrete mechanics literature and

in civil engineering in general. The main reason for this can be traced back to the extreme complexity of

concrete internal structure and to the unavailability of accurate fine-scale models for concrete.

In the last twenty years, various authors attempted the development of concrete models targeting

concrete mini-scale (length scale of 10−4m or less) and meso-scale (length scale 10−3m). The mini-scale

nomenclature was first introduced by Cusatis et al. [19] and is relevant to the description of concrete as a

three-phase material: cement paste, aggregate, and interfacial transitional zone, whereas the meso-scale is
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relevant to the characterization of concrete as two-phase material: mortar and coarse aggregate. It must

be noted that some authors use the term “meso-scale” in a wider sense to include the “mini-scale”.

Mini-scale models were proposed by several authors [31, 33, 32, 10, 1, 9, 37]. Remarkable are the

contributions due to Wittmann and coworkers [31] for 2D models, and to Carol and coworkers [12, 11, 13]

for 3D models. They used finite element techniques to model, with different constitutive laws, coarse

aggregate pieces, mortar matrix, and an inclusion-matrix interface. A more effective alternative to the use

of finite elements was proposed by Van Mier and coworkers [33, 32] who removed the continuum hypothesis

and modeled concrete through a discrete system of beams (lattice). In their approach, lattice meshes were

superimposed to digitalized images of the concrete internal structure to assign different material properties

to the lattice elements corresponding to the various components (matrix, aggregate, and interface). Along

this line, Bolander and coworkers [9, 37] formulated a discrete mini-scale model based on the interaction

between rigid polyhedral particles obtained though the Voronoi tessellation of the domain. Mini-scale

models provide realistic simulations of concrete cracking, coalescence of multiple distribute cracks into

localized cracks, and fracture propagation. However, they tend to be computationally intensive especially

for 3D modeling that is required to correctly capture compressive failure and confinement effects.

Computationally less demanding are the meso-scale models [5, 17, 19] in which the basic material

components, whole aggregate pieces and the layer of mortar matrix between them, are modeled through

discrete elements (either lattice elements or discrete particles) but are themselves not discretized on a

finer scale. Meso-scale models greatly reduce the size of the numerical problems but at the same time

can capture the fundamental aspects of material heterogeneity. Meso-scale models have made possible

the realistic simulation of both tensile and compressive softening. Preliminary results on the modeling of

multiaxial behavior and confinement effects were also achieved by Cusatis et al. [18] and Belheine et al. [7].

The main objective of this article is to discuss a recently developed meso-scale model for concrete, called

the Lattice Discrete Particle Model (LDPM). The development of LDPM is a synthesis of two independent

research efforts that led to the formulation of the Confinement Shear Lattice (CSL) Model [19, 17, 18] and

the Discrete Particle Model (DPM) [26].

LDPM shares the following features with CSL: (a) It simulates concrete mesostructure by a system

of interacting aggregate particles connected by a lattice system that is obtained through a Delaunay
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tetrahedralization of the aggregate centers; (b) The position of each aggregate piece throughout a given

concrete specimen is defined by means of the basic concrete properties and the size distribution of the

aggregates; (c) The geometrical interaction between the particles is obtained by a three-dimensional domain

tessellation defining a set of polyhedral cells each including one aggregate piece; (d) The mechanical

interaction between the particles is characterized by both normal and shear stresses; and (e) The meso-

scale constitutive behavior is softening for pure tension and shear-tension while it is plastic hardening for

pure compression and shear-compression.

LDPM inherited from DPM the MARS (Modeling and Analysis of the Response of Structures) com-

putational environment [27, 28, 29] that includes long range contact capabilities typical of the classical

formulation of Discrete Element Methods (DEM) [15]. This feature is particularly important for simulating

pervasive failure and fragmentation.

While building on the successful developments of CSL and DPM, LDPM formulation is characterized

by a number of new features that greatly enhance its modeling and predictive capabilities. These new

features can be summarized as follows:

1. Interaction among the particles is formulated through the analysis of an assemblage of four aggregate

pieces whose centers are the vertexes of the Delaunay tetrahedralization. This makes possible the

inclusion of volumetric effects in the constitutive law that cannot be taken into account by the

two-particle interaction used in CSL and DPM.

2. Stresses and strains are defined at each single facet of the polyhedral cells containing the aggregate

pieces. Compared to previous formulations, this allows a better stress resolution in the mesostructure,

which, in turn, leads to a better representation of meso-scale crack and damage distribution.

3. The constitutive law simulates the most relevant physical phenomena governing concrete damage

and failure under tension as well as compression. Compared to the constitutive law used in the

previous work [17], the present law provides better modeling and predictive capabilities especially

for the macroscopic behavior in compression with confinement effects.

4. The constitutive equations include simple but effective unloading-reloading rules that permit an

accurate simulation of concrete response under cyclic loadings.
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5. The constitutive equations also include the effect of material compaction and densification due to

the effect of high confining pressures.

The present formulation can realistically simulate all aspects of concrete response under quasi-static

loading, including tensile and compressive strength, cohesive fracture and size effect, damage in compres-

sion, compression-shear behavior with softening at zero or low-confinement and hardening at high confined

compression, and strength increase under biaxial loading. This paper (Part I of a two-part study) discusses

the details of LDPM formulation and its numerical implementation. Part II will focus on its extensive

calibration and validation.

2 Geometrical Characterization of Concrete Mesostructure

The geometrical characterization of concrete mesostructure is based on a four-step procedure that aims at

defining (1) the number and size of coarse aggregate pieces (particles); (2) particle position; (3) interparticle

connections; and (4) surfaces through which forces are transmitted between adjacent particles. These

surfaces will also represent weak locations in the concrete meso-structure where damage is likely to localize.

2.1 Particle Generation

In the first step, particle generation is carried out by assuming that each aggregate piece can be approxi-

mated as a sphere. Under this assumption, typical concrete granulometric distributions can be represented

by the particle-size distribution function (psd) proposed by Stroeven [35]:

f(d) =
qdq0

[1− (d0/da)q]dq+1
(1)

where da is the maximum aggregate size, and d0 is the minimum particle size used in the simulations.

d0 6= 0 to limit the number of degrees of freedom. The above psd can be interpreted as the probability

density function (pdf) for the occurrence of a certain diameter d. The cumulative distribution function

(cdf) can be then computed as

P (d) =

∫ d

d0

f(d)dd =
1− (d0/d)q

1− (d0/da)q
(2)
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It can be shown [35] that the psd in Equation 1 is associated with a sieve curve (percentage of aggregate

by weight retained by a sieve of characteristic size d) in the form

F (d) =

(
d

da

)nF

(3)

where nF = 3− q. For q = 2.5 (nF = 0.5), Equation 3 corresponds to the the classical Fuller curve which

for its optimal packing properties, was extensively used in concrete technology [24].

For a given cement content c, water-to-cement ratio w/c, specimen volume V , maximum aggregate size

da, and minimum particle size d0 (which governs the resolution of the model), particles to be placed inside

the volume can be obtained as follows:

1. Compute aggregate volume fraction as va = 1− c/ρc − w/ρw − vair, where w = (w/c)c is the water

mass content per unit volume of concrete, w/c is the water-to-cement ratio, ρc = 3150 kg/m3 is

the mass density of cement, ρw = 1000 kg/m3 is the mass density of water, and vair is the volume

fraction of entrapped or entrained air (typically 3-4%);

2. Compute the volume fraction of simulated aggregate as va0 = [1− F (d0)]va = [1− (d0/da)
nF ]va;

3. Compute the total volume of simulated aggregate as Va0 = va0V ;

4. Compute particle diameters by sampling the cdf in Equation 2 by a random number generator:

di = d0[1− Pi(1− dq0/dqa)]−1/q, where Pi is a sequence of random numbers between 0 and 1. Figure

1a shows a graphical representation of the particle diameter selection procedure.

5. For each newly generated particle in the sequence, check that the total volume of generated particles

Ṽa0 =
∑

i(πd
3
i /6) does not exceed Va0. When, for the first time, Ṽa0 > Va0 occurs, the current

generated particle is discarded, and the particle generation is stopped.

Figure 1b shows the comparison between the theoretical sieve curve (solid line) and the computational

sieve curve (circles), obtained through the procedure highlighted above for the generation of a 100-mm-side

cube of concrete characterized by c = 300 kg/m3, w/c = 0.5, nF = 0.5, d0 = 4 mm, and da = 8 mm.

In order to simulate the external surfaces of the specimen volume, the generated particles are augmented

with zero-diameter particles (nodes). Assuming that the external surfaces of the specimen volume can be
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described through a set of vertexes, edges, and polyhedral faces, one node for each vertex is first added

to the particle list. Then, Ne = INT(Le/hs) and Np = INT(Ap/h
2
s) (where INT is the integer part of the

number) nodes are associated with each edge e and polyhedral face p, respectively. Le is the length of a

generic surface edge, Ap is the area of a generic surface polyhedron, and the average surface mesh size hs

is chosen such that the resolution of the discretization on the surface is comparable to the one inside the

specimen. This is achieved by setting hs = ξsd0. Numerical experiments performed in this study show

that ξs = 1.5 provides optimal results.

2.2 Definition of Particle Position

The second step of the geometrical characterization of concrete mesostructure is relevant to the random

distribution of the generated particles on vertexes, edges, surface faces, and interior volume. First, the

vertex nodes are placed. Secondly, nodes are distributed over the edges and surfaces by allowing a minimum

distance of δsd0 to minimize the geometrical bias of the discretization. On the basis of several numerical

simulations performed in this study, the value δs = 1.1 seems to be appropriate to most situations. Finally,

to generate a statistically isotropic random mesostructure, the centers of particles are placed throughout

the volume of the specimen one by one (from the largest to the smallest) by using a procedure introduced

in the concrete literature by Bažant [5] and also used by Cusatis et al. [17]. In this procedure, after

generating a new particle position by a random number generator, a check is made for possible overlaps of

this particle with previously placed particles and with the surface nodes. During this phase, the surface

nodes are assigned a fictitious diameter of δsd0, and a minimum distance of di/2 + dj/2 + ζd0 between the

centers of particles with diameters di and dj is enforced. For ζ = 0 or very small values of ζ, the particle

distribution tends not to be statistically isotropic and presents zones of high particle density and zones

with low particle density. On the contrary, for large values of ζ, the specimen volume becomes saturated

quickly, and particle placement cannot be completed. Extensive numerical experiments conducted by

the authors in this research show that ζ = 0.2 avoids volume saturation in most cases while leading to

relatively uniform particle distributions. Figure 1c shows the particle system generated to simulate a

dog-bone shaped specimen.
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2.3 Geometric Features of the Interaction Between Particles

The third step of the construction of concrete mesostructure consists of defining the topology of the

interaction among the particles. This is obtained by Delaunay tetrahedralization [21, 2], which uses the

nodal coordinates of the particle centers as input and gives a three-dimensional mesh of tetrahedra as

output that do not overlap, fill all the volume of the specimen, and have vertices coinciding with the

given particle centers. In this study, the Delaunay tetrahedralization is performed by using TetGen [34].

TetGen implements a very robust algorithm for the computation of conforming (constrained) Delaunay

triangulations and allows modeling of non-convex geometries such as specimens with notches and cutouts.

Figure 1d shows the Delaunay tetrahedralization of the dog-bone shaped specimen whose particle system

is shown in Figure 1c.

2.4 Definition of Potential Material Failure Locations

Finally, the fourth step for the characterization of concrete mesostructure deals with the definition of

potential material failure locations at the meso-scale. As in previous work by Cusatis [17], it is assumed

here that damage/fracture initiation and evolution occur in the cement paste (or fine mortar) between

aggregate pieces, which remain mostly undamaged during the loading process.

In the previous works by Cusatis et al. [19, 20], each edge of the Delaunay tetrahedra was interpreted

as a connecting strut between two adjacent particles, and an effective area of the strut was defined by

performing a tessellation of the domain anchored to the Delaunay tetrahedralization. This edge-based

interaction is very effective and allows a good representation of concrete fracturing behavior as well as

concrete failure under unconfined compression. However, since edge-based interaction involves only the

kinematics of two particles; it does not provide an accurate description of volumetric effects that are

important to correctly describe the compressive behavior of concrete under high confining pressure. As

will be discussed in the next section, the mechanics of particle interaction in the present study are based

on an analysis of an assemblage of four particles located at the vertices of a tetrahedron. Consequently,

the definition of the surfaces through which interaction forces are exchanged between particles, which

corresponds to damage localization zones, is based on the local geometry of each tetrahedron and the

corresponding particles.
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Since the tetrahedralization of the particle centers is constructed through the Delaunay algorithm, a

straightforward tessellation would be the Voronoi tessellation. However, the Voronoi cells intersect the

Delaunay edges at the mid-points of the edges. This feature is not appealing because, in the general case

of unequal adjacent particles, the surface of the cells would intersect the particles (aggregate pieces). More

in general, the tessellation of a tetrahedron can be obtained by a set of triangles in which each triangle is

formed by a point on a tetrahedron edge (edge-points, points E in Figure 1e), a point on a tetrahedron

face (face-points, points F in Figure 1e), and a point inside the tetrahedron (tet-point, point T in Figure

1e). Since a tetrahedron has six edges and each edge is shared by two faces, such a tessellation would

result in a set of twelve triangular facets.

The selection of edge-points, face-points, and tet-points is somewhat arbitrary, but numerical experi-

ments conducted in this study show that the procedure outlined below tends to minimize the intersection

between the tessellating surfaces and the particles. Such property makes the representation of meso-scale

crack paths consistent with the assumption that fracture initiates and propagates in the cement paste

and/or fine mortar.

With reference to a tetrahedron, (Figure 1e) in which vertices are labeled as 1, 2, 3, and 4, each face is

labeled through the label of the vertex opposite to that face, and each edge is labeled through the labels

of vertices attached to it. Note that, in Figure 1e as well as in Figures 1f, 1g, 1h, and 2a, 2b, and 2c, the

distance between the particles was fictitiously enlarged for illustration purposes. Actual particle systems,

such as the one shown in Figure 1c, generally feature inter-particles gaps significantly smaller than the

diameters of typical particles.

1. Edge-points are defined at midway of the counterpart of the edges not belonging to the associated

particles (see point E12 in Figure 1f for the edge between particle P1 and P2).

2. Face-points are defined as follows. For each face of the tetrahedron, first three points (for example,

F∗41, F∗42, and F∗43 for face 4) located on the straight lines connecting each face vertex to to the

edge-point located on the edge opposite to the particle under consideration are identified. Similarly

to the edge-points, these points are located at midway of the line counterpart not belonging to the

associated particles. In Figure 1g, the point F∗43 associated with vertex P3 and edge-point E12 is

shown. Then, the face-point is selected as the centroid of these three points (see points F in Figure
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1e).

3. Similarly to face points, the tet-point is defined as the centroid T of the points T∗1, T∗2, T∗3, and T∗4

identified on the straight lines connecting each vertex of the tetrahedron with the face-point on the

face opposite to the vertex under consideration and located at midway of the line counterpart not

belonging to the associated particle. In Figure 1h, the point T*4 associated with vertex P4 is shown.

By collecting all the facets associated with one particle, one obtains a polyhedral cell containing the

particle. Each cell has its own random irregular shape (see Figure 1i). This property is very important

to ensure a realistic representation of the kinematics of concrete mesostructure and especially to avoid

excessive rotations [36].

3 Discrete Compatibility and Equilibrium Equations

The basic four-particle tetrahedron, depicted in Figure 1h, is used here to derive the governing equations

of the model. The tetrahedron is subdivided into four subdomains Vi (i =1, ..., 4), each defined by one

node (particle), a portion of the three tetrahedron edges attached to the node, and the six triangular

tessellation facets attached to the three edges (see Figure 2a).

In each subdomain, the displacement field is defined through rigid-body kinematics. For x = [x1 x2 x3]
T ∈

Vi, one can write

u(x) = ui + θi × (x− xi) = Ai(x)Qi (4)

where

Ai(x) =


1 0 0 0 x3 − x3i x2i − x2

0 1 0 x3i − x3 0 x1 − x1i

0 0 1 x2 − x2i x1i − x1 0

 (5)

The vector xi describes the position of node i, and the vector QT
i = [uT

i θ
T
i ] collects the translational,

uT
i = [u1i u2i u3i], and rotational, θTi = [θ1i θ2i θ3i], degrees of freedom of node i (see Figure 2a).

By using Equation 4, it is possible to define a displacement jump at the centroid C of each facet in the

10



tetrahedron

JuCkK = uCj − uCi (6)

where i and j are the nodes adjacent to facet k, and uCj = u(x+
Ck) and uCi = u(x−Ck) are the displacements

at the facet centroid Ck for x−Ck ∈ Vi , x+
Ck ∈ Vj (see Table 1 for the permutation of indices i, j, and k).

By dividing the displacement jump by the edge length, it is possible to define a facet strain vector

as `−1e JuCkK, where `e = ‖xj − xi‖ = [(xj − xi)
T(xj − xi)]

1/2 is the length of edge e (Table 1). In

order to formulate a constitutive law featuring the classical tension-compression asymmetry of concrete

behavior, the strain vector `−1e JuCkK needs to be decomposed into its normal and shear components. This

is accomplished with reference to the projection of the tessellation facets into planes orthogonal to the

edges (see Figure 2b). The projected facets, as opposed as the original ones, are used for the definition

of LDPM strain components to avoid non-symmetric behavior under pure shear. This issue is clarified in

more detail in Figure 2c in which the effect of a shear relative displacement between two particles, which

is orthogonal to the edge, is analyzed. If the facet is not orthogonal to the edge (see Figure 2c-left), the

shear relative displacement can cause either tension or compression depending on its sign. Due to lack of

symmetry of concrete behavior in tension and compression, this leads to sign-dependent meso-scale shear

behavior that, in turn, causes stress locking during tensile fracturing simulations. Such a spurious effect

disappears if one formulates the mechanical interaction between particles on the projection of the facets

in a plane orthogonal to the edge (Figure 2c-right).

The strains components can be then defined as

εNk =
nT
k JuCkK
`e

= Bjk
NQj −Bik

NQi (7)

εMk =
mT

k JuCkK
`e

= Bjk
MQj −Bik

MQi (8)

εLk =
lTk JuCkK
`e

= Bjk
L Qj −Bik

LQi (9)

where nk = (xj − xi)/`e, mk and lk are two mutually orthogonal directions in the plane of the projected
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facets, Bpk
N = (1/`e)n

T
kAp(xCk), B

pk
M = (1/`e)m

T
kAp(xCk), and Bpk

L = (1/`e)l
T
kAp(xCk), p = i, j. Equations

7, 8, and 9 represent the discrete compatibility equations of the LDPM formulation.

The meso-scale constitutive law, described in the next Section, allows the calculation of the normal

and shear stresses at each facet. Formally, one can write σk = F(εk, ξk) where σk, εk, and ξk are vectors

collecting facet stresses, strains, and internal variables, respectively.

Finally, the governing equations can be completed by imposing the equilibrium through the Principle

of Virtual Work (PVW). The internal work associated with a generic facet can be expressed as

δWk = `eAkσ
T
k δεk = `eAk(σNkδεNk + σMkδεMk + σLkδεLk) (10)

where Ak is the projected facet area.

By substituting Equations 7, 8, 9 into Equation 10, one obtains

δWk = FT
ikδQi + FT

jkδQj (11)

FT
ik = −`eAk(σNkBik

N + σMkB
ik
M + σLkB

ik
L ) (12)

FT
jk = `eAk(σNkB

kj
N + σMkB

kj
M + σLkB

kj
L ) (13)

that represent the nodal forces at node i and j associated with facet k. By summing up the contributions

of all the facets and equating the total internal work with the total external work, one can obtain the

discrete equilibrium equations of the LDPM formulation. It can be shown that the equilibrium equations

obtained through the PVW correspond exactly to the translational and rotational equilibrium of each

polyhedral LDPM cell.

4 LDPM Constitutive Law

In this section, the LDPM constitutive law, which provides the relationship between the strain vector and

the stress vector at the facet level, is presented. Hereinafter, the subscript k indicating the generic facet
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is dropped for sake of simplicity and readability of the equations.

4.1 Elastic Behavior

The elastic behavior is formulated by assuming that normal and shear stresses are proportional to the

corresponding strains:

σN = ENεN ; σM = ET εM ; σL = ET εL (14)

where EN = E0, ET = αE0, E0 = effective normal modulus, and α = shear-normal coupling parameter.

E0 and α are assumed to be material properties that can be identified from results of experimental tests

in the elastic regime.

At the macroscopic level, concrete elastic behavior is statistically homogeneous and isotropic. As such,

it can be modeled effectively through the classical theory of elasticity characterized by Young’s modulus,

E, and Poisson’s ratio, ν. The relationship between the meso-scale LDPM parameters, α and E0, and

the macroscopic elastic parameters, E and ν, can be obtained by considering a limiting case in which an

infinite number of facets surrounds one aggregate piece. In this case, the LDPM formulation corresponds

to the kinematically constrained formulation of the microplane model without deviatoric/volumetric split

of the normal strain component [14]. In this case, one can write

E0 =
1

1− 2ν
E ⇐⇒ E =

2 + 3α

4 + α
E0 (15)

and

α =
1− 4ν

1 + ν
⇐⇒ ν =

1− α
4 + α

(16)

Figures 3a and 3b compare the estimates according to Equations 15 and 16 (solid lines) to the macro-

scopic average Poisson’s ratio and Young’s modulus obtained numerically through LDPM simulations

(circles). The LDPM simulations were performed on cubic 100-mm-side specimens generated with the

following parameters: w/c = 0.5, a/c = 6.5, c = 300 Kg/m3, da = 8 mm, d0 = 4 mm, and nF = 0.5. The

LDPM data points (circles) were obtained by setting E0 and α to given values and subjecting the specimens
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to end displacements corresponding to a macroscopic (average) strain of E33 = 2×10−4. The results of the

simulations were post-processed to obtain the macroscopic (average) stress Σ33 and the macroscopic (aver-

age) transverse strains E11 and E22 from which the macroscopic Poisson’s ratio and macroscopic Young’s

modulus were computed as E = Σ33/E33 and ν = −0.5(E11 + E22)/E33. The excellent agreement between

the numerical and the analytical results suggests that Equations 15 and 16 can be used confidently to

estimate the LDPM elastic parameters from macroscopic experimental measurements of Young’s modulus

and Poisson’s ratio.

As it was pointed out by Bažant [6], Equations 16 do not cover the entire range of thermodynamically

acceptable Poisson’s ratios (-1 to 0.5) since negative values of α (and consequently negative values of the

shear stiffness) are associated with ν > 0.25. Although this limitation may hamper the applicability of

the LDPM framework to materials with ν > 0.25, it does not affect the modeling of concrete for which

Poisson’s ratio is always about 0.2 or less. In the microplane formulation, the full Poisson’s ratio range

can be obtained by introducing the volumetric/deviatoric decomposition [14] of the normal component,

εN = εV + εD, and by expressing normal and shear stresses as σN = EV εV + EDεD, σM = EDεM ,

σL = EDεL, where EV = E/(1 − 2ν) and ED = E/(1 + ν) are the volumetric and deviatoric moduli,

respectively. The same approach could be used for LDPM-type formulation [17, 19]; however in this way,

the LDPM capability of correctly simulating splitting failure under compression (this being one of the

unique features of LDPM) would be completely lost.

This point can be discussed in more detail considering Figure 3c, in which a schematic representation

of the stress path obtained by loading in compression a heterogeneous material is shown. Heterogeneities

induce a deviation of the compressive stress flow leading to the formation of transverse tensile stresses that,

ultimately cause splitting failure. In the LDPM formulation in which the normal stress is proportional to

the normal strain, the transverse tension is automatically captured. On the contrary, if the deviatoric-

volumetric split is used, LDPM-type formulations reproduce the elastic solution of classical elasticity for

homogeneous and isotropic materials [30]. In this case, the stress compressive flow is undisturbed from

the top to the bottom of the specimen, and no tensile stresses can be observed. In this situation, tensile

failure is obviously not possible, and splitting cracks cannot initiate and propagate.
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4.2 Inelastic Behavior

The LDPM formulation of the nonlinear and inelastic behavior aims at representing three separate physical

mechanisms characterizing meso-scale failure behavior: 1) fracturing and cohesive behavior under tension

and tension/shear; 2) pore collapse and material compaction under high compressive stresses; and 3)

frictional behavior.

4.2.1 Fracturing Behavior

Fracturing behavior is characterized by tensile normal strains (εN > 0). As previously developed by

Cusatis [16, 17], it is convenient to formulate fracture and damage evolution by a relationship between the

effective strain, ε, and the effective stress, σ, defined as

ε =
√
ε2N + α(ε2M + ε2L); σ =

√
σ2
N + (σ2

M + σ2
L)/α (17)

By using the effective strain and the effective stress, the relationship between normal and shear stresses

versus normal and shear strains can be formulated through damage-type constitutive equations (see deriva-

tion by Cusatis et al. [17]):

σN = σ
εN
ε

; σM = σ
αεM
ε

; σL = σ
αεL
ε

(18)

The effective stress σ is assumed to be incrementally elastic, σ̇ = E0ε̇, and it is formulated to satisfy

the inequality 0 ≤ σ ≤ σbt(ε, ω), which is enforced through a vertical (at constant strain) return algorithm.

Following [16, 17], the strain-dependent boundary σbt(ε, ω) can be expressed as

σbt(ε, ω) = σ0(ω) exp

[
−H0(ω)

〈εmax − ε0(ω)〉
σ0(ω)

]
(19)

in which the brackets 〈•〉 are used in Macaulay sense: 〈x〉 = max{x, 0}.

The coupling variable ω represents the degree of interaction between shear and normal loading and is

defined as [17]

tanω =
εN√
αεT

=
σN
√
α

σT
(20)
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where εT =
√
ε2M + ε2L is the total shear strain, and σT =

√
σ2
M + σ2

L is the total shear stress. The

boundary σbt evolves exponentially as a function of the maximum effective strain, which is a history-

dependent variable defined as εmax =
√
ε2N,max + αε2T,max and where εN,max(t) = max

τ<t
[εN(τ)] and εT,max(t) =

max
τ<t

[εT (τ)] are the maximum normal and total shear strains, respectively, attained during the loading

history. It is worth noting that in absence of unloading, εmax ≡ ε.

The function σ0(ω) is the strength limit for the effective stress and is defined as

σ0(ω) = σt
− sin(ω) +

√
sin2(ω) + 4α cos2(ω)/r2st

2α cos2(ω)/r2st
(21)

in which rst = σs/σt is the ratio between the shear strength (cohesion), σs, and the tensile strength, σt. In

the stress space σN − σT , Equation 21 is a parabola with its axis of symmetry coinciding with the σN -axis

(solid curve in Figure 4a).

The exponential decay of the boundary σbt starts when the maximum effective strain reaches its elastic

limit ε0(ω) = σ0(ω)/E0, and the decay rate is governed by the post-peak slope (softening modulus), which

is assumed to be a power function of the internal variable ω:

H0(ω) = Ht

(
2ω

π

)nt

(22)

Equation 22 provides a smooth transition from softening behavior under pure tensile stress, H0(π/2) =

Ht, to perfectly plastic behavior under pure shear, H0(0) = 0. In order to preserve the correct energy

dissipation during meso-scale damage localization [4], the softening modulus in pure tension is expressed

as Ht = 2E0/ (`t/`− 1), where Gt is the meso-scale fracture energy, `t = 2E0Gt/σ
2
t , and ` is the length of

the tetrahedron edge associated with the current facet.

The dashed curve in Figure 4a represents the strength domain (computed from the boundary σbt)

corresponding to εmax = 4σt/E0. As one can see, as damage progresses, the strength domain shrinks

and tends to become concave. This characteristic is important in order to correctly simulate the different

ductilities in tension and compression at the macro-scale. It is also worth noting that, in damage mechanics

(contrary to plasticity), the lack of convexity of the strength domain does not violate thermodynamics

restrictions on the energy dissipation, and as such, it is a completely acceptable feature of the formulation.

Figure 4b shows the normal and shear stress versus strain relationships for ω = 0 (pure shear), ω = π/2
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(pure tension), and ω = π/8. The plots were generated by setting, for illustration purposes, ` = 10 mm,

α = 0.25, E0 = 30000 MPa , σt = 3 MPa, σs = 4.5 MPa, `t = 100 mm, and nt = 0.2.

Finally, the fracturing formulation needs to be completed by unloading-reloading rules to simulate

cycling loadings. Figure 4c illustrates the unloading-reloading rule adopted in this work in terms of

effective stress versus effective strain relationship. Let’s assume that unloading occurs after the effective

strain increased continuously from zero to a certain value εmax. The effective stress decreases elastically

until it reaches a zero value and remains constant at zero for further decreases of the effective strain.

During reloading, the effective stress remains zero until the effective strain reaches the reloading strain

limit, εtr, and, beyond this point, the behavior is incrementally elastic. The reloading strain limit is defined

as εtr = kt(εmax− σbt/E0), where kt is assumed to be a material parameter. The parameter kt governs the

size of hysteresis cycles and, consequently, the amount of energy that the material can dissipate during

cycling loading. For kt = 1, the dissipated energy is zero, whereas for kt = 0, it is a maximum and equal

to A`σbtεmax for a given εmax on a facet of projected area A and associated with a lattice edge length `.

4.2.2 Pore Collapse and Material Compaction

Under high compressive hydrostatic deformations, concrete behavior exhibits strain-hardening plasticity.

The plastic behavior is characterized by an initial phase in which micro-scale and meso-scale pores collapse

under load, and a later phase, in which the walls of completely collapsed pores are in contact leading to a

significant densification of the material [25]. In terms of stress-strain response, the first phase is associated

with a sudden decrease of the stiffness that is later regained in the second phase (rehardening). Experiments

show [3] that after the densification phase, both the tangent plastic stiffness and the unloading elastic

stiffness are, in some cases, even larger than the initial elastic stiffness. Finally, rehardening is limited (or

even negligible) in the presence of significant deviatoric deformations, which typically leads to a horizontal

plateau in the measured macroscopic stress versus strain curves.

LDPM constitutive law simulates the phenomena discussed above through a strain-dependent normal

boundary limiting the compressive normal stress component at the facet level. This compressive boundary,

σbc(εD, εV ), is assumed to be a function of the volumetric strain εV and the deviatoric strain εD. The

volumetric strain is computed at the tetrahedron level as εV = (V −V0)/V0 where V and V0 are the current
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and initial volume of the tetrahedron, respectively. The current volume is computed by neglecting the effect

of nodal rotations. A more rigorous definition of volumetric strain in the framework of discrete models and

accounting particle rotations is provided by Cusatis and Schauffert [?]. In each LDPM tetrahedron, all

twelve facets are assumed to be subject to the same volumetric strain whereas each facet is characterized

by a different value of the deviatoric strain calculated by subtracting the volumetric strain from the normal

strain: εD = εN − εV . The definition of the volumetric and deviatoric strains are completely equivalent to

the same quantities defined at each microplane in the microplane model formulation [6].

For a constant deviatoric-to-volumetric strain ratio, rDV = εD/εV , the compressive boundary is as-

sumed to have an initial linear evolution (modeling pore collapse and yielding) followed by an exponential

evolution (modeling compaction and rehardening). One can write

σbc(εD, εV ) =


σc0 for − εV ≤ 0

σc0 + 〈−εV − εc0〉Hc(rDV ) for 0 ≤ −εV ≤ εc1

σc1(rDV ) exp [(−εV − εc1)Hc(rDV )/σc1(rDV )] otherwise

(23)

where σc0 is the meso-scale yielding compressive stress, εc0 = σc0/E0 is the compaction strain at the onset

of pore collapse, Hc(rDV ) is the initial hardening modulus, εc1 = κc0εc0 is the compaction strain at which

rehardening begins, κc0 is the material parameter governing the onset of rehardening, and σc1(rDV ) =

σc0 + (εc1 − εc0)Hc(rDV ).

For increasing rDV , the slope of the initial hardening modulus needs to tend to zero in order to simulate

the observed horizontal plateau featured by typical experimental data. This can be achieved by setting

Hc(rDV ) =
Hc0

1 + κc2 〈rDV − κc1〉
(24)

where Hc0, κc1, and κc2 are assumed to be material parameters. For compressive loading (εN < 0), the

normal stress is computed by imposing the inequality −σbc(εD, εV ) ≤ σN ≤ 0. Within the boundaries of

this inequality, the behavior is assumed to be incrementally elastic: σ̇N = ENcε̇N . In order to model the

increased stiffness during unloading, the loading-unloading stiffness ENc is defined as
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ENc =


E0 for − σN < σc0

Ed otherwise

(25)

where Ed is the densified normal modulus. For loading processes at constant rDV , we have εV = εN/(1 +

rDV ). In this case, the boundary in Equation 23 can be expressed as a function of the normal strain εN ,

shown in Figure 4d, where the solid and dashed curves represent, respectively, the compressive normal

stress versus strain relationship for rDV = 0 and rDV = 1.1. For the case of rDV = 0, the unloading-

reloading rule is also shown. For illustration purposes, we assumed parameter values of E0 = 60000 MPa,

σc0 = 100 MPa, Hc0/E0 = 0.6, κc0 = εc1/εc0 = 4, Ed/E0 = 2, κc1 = 1, and κc2 = 5.

4.2.3 Frictional Behavior

Finally, in the presence of compressive stresses, the shear strength increases due to frictional effects. As

often done in the literature, frictional phenomena can be simulated effectively through classical incremental

plasticity [22]. Incremental shear stresses can be calculated as σ̇M = ET (ε̇M − ε̇pM) and σ̇L = ET (ε̇L− ε̇pL),

where the plastic strain increments are assumed to obey the normality rule ε̇pM = λ̇∂ϕ/∂σM and ε̇pL =

λ̇∂ϕ/∂σL.

The plastic potential can be expressed as ϕ =
√
σ2
M + σ2

L − σbs(σN) in which the shear strength σbs is

formulated with a nonlinear frictional law:

σbs(σN) = σs + (µ0 − µ∞)σN0 − µ∞σN − (µ0 − µ∞)σN0 exp (σN/σN0) (26)

where σs is the cohesion (previously introduced in this paper), µ0 and µ∞ are the initial and final internal

friction coefficients, respectively, and σN0 = is the normal stress at which the internal friction coefficient

transitions from µ0 to µ∞. As shown in Figure 4e, the frictional law in Equation 26 tends to the asymptote

σs + (µ0 − µ∞)σN0 − µ∞σN characterized by a slope equal to µ∞ and whose intercept with the σT -axis

increases with increasing σN0. The parameter σN0 basically governs the extent of the nonlinearity of the

shear boundary. The classical linear (Coulomb-type) frictional law with slope µ0 or µ∞ is obtained by

setting σN0 = ∞ or σN0 = 0, respectively. Finally, equations governing the shear stress evolution must

be completed by the loading-unloading conditions, which can be expressed through the classical Kuhn-
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Tucker’s conditions: ϕλ̇ ≤ 0 and λ̇ ≥ 0. Typical shear versus strain relationship is shown in Figure

4f.

5 Numerical Implementation and Stability Analysis

The LDPM computational framework formulated in this paper was implemented into the MARS code

[27], which is a multi-purpose structural analysis program based on a modern object-oriented architecture.

MARS performs structural analysis by an explicit dynamic algorithm (based on a central difference scheme)

and is very effective in the management of the various computational entities (nodes, finite elements,

loads, etc.) making possible the numerical simulation of very large systems even on regular desktop

computers. These features are particularly attractive for the research presented in this paper since LDPM

calculations often involve several thousands of degrees of freedom. In addition, the explicit character of

the computational scheme implemented in MARS makes it very advantageous because is not affected by

the convergence problems that implicit schemes often have in handling softening behavior.

Explicit algorithms, however, are not unconditionally stable and require an accurate evaluation of

the numerical stability of the numerical simulations. In the elastic regime, the stability condition can

be expressed as ∆t < 2/ωmax where ωmax represents the highest natural frequency of the computational

system. It can be shown [8] that ωmax < max(ωI) where ωI are the natural frequencies of the individual

unrestrained elements composing the mesh used in the simulation. Based on this observation, the stable

time step for the LDPM can be estimated by computing the natural frequencies of each LDPM tetrahedra.

This requires solving the eigenvalue problem det(K− ω2M) = 0 where K is the stiffness matrix and M is

the mass-matrix.

The elastic energy associated with a generic facet k is

Uk =
1

2
`eAk(ENε

2
Nk + ET ε

2
Lk + ET ε

2
Mk) = (Kk

ij + Kk
jj)Qj + (Kk

ii + Kk
ji)Qi (27)

where Kk
pq = EN(Bpk

N )TBqk
N + ET (Bpk

M)TBqk
M + ET (Bpk

L )TBqk
L (p, q = i, j).

The overall tetrahedron stiffness matrix is obtained by assembling strain energy contributions of all

twelve facets:
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K =
12∑
k=1

Kk =
12∑
k=1

 Kk
ii Kk

ij

Kk
ji Kk

jj

 (28)

where the symbol
∑

is used to identify the assemblage operation. The kinetic energy associated with a

generic facet k can be subdivided into two terms associated with the two nodes (i and j, see Table 1)

adjacent to the facet: Tk = Tki + Tkj. Each individual term reads

Tkp =
1

2

∫
Vkp

ρu̇(x)Tu̇(x)dV =
1

2
Q̇T
p

[∫
Vkp

ρAp(x)TAp(x)dV

]
Q̇p =

1

2
Q̇T
pM

k
pQ̇p (29)

where

Mk
p = ρ



Vkp 0 0 0 Szkp −Sykp

0 Vkp 0 −Szkp 0 Sxkp

0 0 Vkp Sykp −Sxkp 0

0 −Szkp Sykp Iykp + Izkp −Ixykp −Ixzkp

Szkp 0 −Sxkp −Ixykp Ixkp + Izkp −Iyzp

−Sykp Sxkp 0 −Ixzkp −Iyzkp Ixkp + Iykp


(30)

and ρ = c(w/c + a/c) + ρairvair is material density, ρair is 1.2 Kg/m3 (at sea level and at 15◦C), and Vkp

is the volume identified by the facet k and the node p. The various terms appearing in the matrix Mk
p

are first order (symbols S) and second order (symbols I) moments of the volume Vkp about the axes of a

cartesian system of reference with origin at node p.

Similar to the stiffness matrix, the overall tetrahedron mass matrix is obtained by assembling the

contributions of the twelve facets

M =
12∑
k=1

Mk =
12∑
k=1

 Mk
i 0

0 Mk
j

 (31)

The mass matrix in Equation 31 is, in general, not diagonal. In order to take full advantage of the

explicit algorithm used in this study, a diagonalized version of M is obtained by simply discarding the

non-diagonal terms. It is worth noting that by using the diagonalized matrix, the mass term of a certain
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particle node is exact if the particle node is the mass centroid of the LDPM cell. This is approximately

the case for many particle nodes in the interior of typical LDPM systems.

6 Concluding Remark

The Lattice Discrete Particle Model (LDPM) formulated in this paper has several unique features and

potential capabilities, which, however, need to be verified by performing numerical simulations and com-

paring numerical results with experimental data. Part II of this study, which follows, presents an extensive

calibration and validation of LDPM.
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facet edge node node
k e i j

1, 2 1 1 2
3, 4 2 1 3
5, 6 3 2 3
7, 8 4 2 4
9, 10 5 3 4
11, 12 6 1 4

Table 1: Facet, edge, and node indices.
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particles; f) Edge-point definition; g) Face-point definition; h) Tet-point definition; i) LDPM cells for two
adjacent aggregate particle.
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Figure 2: a) Counterpart of a tetrahedron associated to one particle; b) Original and projected LDPM
facets; c) Effect of meso-scale pure shear loading on one LDPM original facet (left) and one LDPM
projected facet (right).
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Figure 3: a) Relationship between macroscopic Young’s modulus and LDPM elastic parameters ([-] means
that the correspondent quantity is adimensional); b) relationship between macroscopic Poisson’s ratio and
LDPM coupling parameter; c) Idealization of the effect of compression on heterogeneous materials.
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Figure 4: LDPM constitutive laws. a) Virgin and damaged shear strength as function of positive normal
stresses; b) Typical stress versus strain curves at the LDPM facet level; c) Unloading-reloading model;
d) Typical normal stress versus normal strain curves in compression; e) Shear strength as a function of
negative normal stresses (frictional behavior); f) Typical shear stress versus shear strain curve.
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